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Abstract

Because ray goes along a curved path determined by the Fermat principle, curved ray tracing is very difficult and
complex in graded index media. To avoid the difficult and complex computation of curved ray trajectories, a meshless
local Petrov–Galerkin approach based on discrete-ordinate equations is developed to solve the radiative transfer prob-
lem in multi-dimensional absorbing–emitting–scattering semitransparent graded index media. A moving least square
approximation is used to construct the shape function. Two particular test problems in radiative transfer are taken
as examples to verify this meshless approach. The predicted temperature distributions and the dimensionless radiative
heat fluxes are determined by the proposed method and compared with the other benchmark approximate solutions.
The results show that the meshless local Petrov–Galerkin approach based on discrete-ordinate equations has a good
accuracy in solving the radiative transfer problems in absorbing–emitting–scattering semitransparent graded index
media.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to the structural characteristics of material or a
possible temperature dependency, the refractive index of
a medium may be a function of the spatial position. In
this case, rays propagating inside the medium are not
straight lines, but curved lines determined by the Fermat
principle [1,2]. The radiative heat transfer in a semitrans-
parent medium with variable spatial refractive index (or
graded index) is of great interest in thermo-optical sys-
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tems, and has evoked the wide interest of many research-
ers. Recently, many ray-tracing techniques have been
presented by Ben Abdallah et al. [3–6], Huang et al.
[7,8], Liu et al. [9,10] to solve the radiative transfer prob-
lem in the semitransparent medium with graded refrac-
tive index. Because the ray goes along a curved path
determined by the Fermat principle, the curved ray trac-
ing is very difficult and complex in the graded index
medium. At present, the methods based on the curved
ray-tracing techniques were mainly limited to one-
dimensional radiative transfer problems. The numerical
approaches of the radiative transfer equation in multi-
dimensional semitransparent graded index media re-
quire considerable effort.
ed.
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Nomenclature

a coefficients for MLS approximation in
Eq. (18)

a vector of coefficient a
A matrix defined in Eq. (21)
B matrix defined in Eq. (22)
g quartic spline function with compact

support
i, j,k unit vectors into the x-, y- and z-directions,

respectively
I radiative intensity
Ib blackbody radiative intensity
K coefficients in linear equations
L slab thickness, side length of rectangular

medium
NMLS number of the nodes used for MLS approx-

imation
Nnode total node number scattered in the entire

domain and its boundary
Nh number of polar angular discretization
Nu number of azimuthal angular discretization
Nn number of the discretization in direction

cosine n
n refractive index
nw unit outward normal vector of the boundary

wall
p monomial basis
q radiative heat flux
r vector of spatial position
s abscissas on the ray trajectory
s1 vector defined in Eq. (2b), s1 ¼ �i sinuþ

j cosu
T temperature
Twi temperature of wall i
u trial function
u vector of trial function
v test function
VS local sub-domain for weighted integration
Vx domain of definition of MLS approximation

for the trial function at x
wm,n weight corresponding to the direction (m,n)
wMLS MLS weight function
x,y,z Cartesian coordinates

x spatial position vector of point, x = [x,y,z]T

xQ Gaussian quadrature point
a partial derivative of refractive index respect

to x, a ¼ 1
n
on
ox

aMLS, aGQ dimensionless size parameters
b partial derivative of refractive index respect

to y, b ¼ 1
n
on
oy

c partial derivative of refractive index respect
to z, c ¼ 1

n
on
oz

g direction cosine, g ¼ sin h sinu
dij Kronecker�s delta
e wall emissivity
h polar angle
Dh polar angle step
ja absorption coefficient
js scattering coefficient
l direction cosine, l ¼ sin h cosu
n direction cosine, n ¼ cos h
r Stefan–Boltzmann constant
sL optical thickness, sL = (ja + js)L
u azimuthal angle
Du azimuthal angle step
U scattering phase function
vh,vu coefficients of the discretization equation,

defined in Eqs. (9) and (14)
W dimensionless radiative heat flux
x single scattering albedo, x = js/(ja + js)
X solid angle
X vector of radiation direction, X = il + jg +

kn
$ spatial divergence operator, r ¼ i o

ox þ j o
oy þ

k o
oz

Subscripts

0 value at z = 0
av averaged value
L value at z = L

w value at wall boundary

Superscripts

m,n,m 0,n 0,m ± 1/2,n ± 1/2, angular direction of
radiation
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To avoid the difficult and complex computation of
curved ray trajectories, the methods, which are not
based on curved ray-tracing, need to be developed for
the solution of radiative heat transfer in graded index
media. Among the methods which are not based on
ray-tracing, the finite volume method (FVM), the dis-
crete ordinates method (DOM), and the finite element
method (FEM) are today probably the most popular
methods to solve the radiative heat transfer in the med-
ium with a uniform refractive index. However, because
of the curved ray trajectory, these methods can not be
directly used to solve the radiative transfer within the
graded index medium. The streaming operator d/ds
along a curved ray trajectory in original radiative trans-
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Fig. 1. Cartesian coordinate system.
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fer equation for graded index media needs to be trans-
formed into the form of spatial divergence operator,
namely, X Æ $I. Following this way, Lemonnier and
Dez [11] presented a DOM for the solution of radiative
transfer across a one-dimensional slab with variable
refractive index. Recently, Liu [12] deduced the three-
dimensional radiative transfer equation within graded
index media in Cartesian coordinate system and devel-
oped a FVM to solve the multi-dimensional radiative
transfer in a graded index media. However, because
the problem domain needs to be discretized into meshes,
these traditional methods, especially the FEM, suffer
from drawbacks such as tedious meshing and re-
meshing.

In the community of computational mechanics, many
meshless methods have been proposed for the problem
of computational mechanics to avoid the tedious mesh-
ing and re-meshing. Meshless method is used to establish
a system of algebraic equations for whole problem do-
main without the use of a predefined mesh. Meshless
method use a set of nodes scattered within the problem
domain and its boundaries. These scattered nodes do
not form a mesh, which means that no information on
the relationship between the nodes is required. Various
methods belonging to this family are the element free
Galerkin method, the meshless local Petrov–Galerkin
(MLPG) method, the point interpolation method, the
smoothed particle hydrodynamics method and so on
[13–15]. Among these methods, MLPG method is a truly
meshless method, which was originated by Atluri and
Zhu [16] for the problem of computational mechanics.
To the best knowledge of the author, meshless methods
have not been used for the radiative transfer problem in
graded index media.

In this paper, to avoid the difficult and complex com-
putation of curved ray trajectories, a meshless local
Petrov–Galerkin approach based on discrete-ordinate
equations is developed to solve the radiative transfer
problem in multi-dimensional absorbing–emitting–scat-
tering semitransparent graded index media. A moving
least square approximation is used to construct the
shape function. Two particular test problems of radia-
tive transfer inside the semitransparent graded index
medium are taken as examples to verify this meshless
approach.
2. Mathematical formulation

2.1. Discrete ordinate equation for graded index media

In the Cartesian coordinates system as shown in
Fig. 1, the conservative form of radiative transfer equa-
tion within graded index medium can be written in the
divergence form as [12]
X � rIðr;XÞ þ 1

2n2 sin h
o

oh
Iðr;XÞðnX� kÞ � rn2
� �� �

þ 1

2n2 sin h
o

ou
fIðr;XÞ½s1 � rn2�g þ ðja þ jsÞIðr;XÞ

¼ n2jaIb þ
js

4p

Z
4p
Iðr;X0ÞUðX;X0ÞdX0; ð1Þ

where

X ¼ ilþ jgþ kn

¼ i sin h cosuþ j sin h sinuþ k cos h; ð2aÞ
s1 ¼ �i sinuþ j cosu. ð2bÞ

Here, i, j, and k are unit vectors into x-, y- and z-direc-
tions, respectively. The radiative transfer equation in
graded index medium is different from that in uni-
form index medium. Terms involving a partial derivative
with respect to an angular coordinate in Eq. (1) are
referred as angular redistribution terms, which specially
account for the curvature of the optical path in the
graded index medium. For a opaque diffuse boundary
wall, the boundary condition of Eq. (1) is given as
follows:

Iðrw;XÞ ¼ ewn2w
rT 4

w

p
þ ð1� ewÞ

p

�
Z
nw�X0P0

Iðrw;X0Þðnw �X0ÞdX0; nw �X < 0;

ð3Þ

where nw is the unit outward normal vector of the
boundary wall.

In the DOM, Eq. (1) is solved for a set of different
directions, and the integrals over direction are replaced
by numerical quadratures. Considering that Eq. (1) con-
tains two angular redistribution terms, we employ the
piecewise constant angular (PCA) quadrature. In the
PCA quadrature, the total solid angle is divided uniform
in the polar h and azimuthal u directions. The numbers
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of divisions are denoted by Nh and Nu. From this we can
write Eq. (1) in discrete ordinates form as

Xm;n � rIðr;Xm;nÞ

þ 1

2n2 sin hm
o

oh
Iðr;XÞ nX� kð Þ � rn2
� �� �� �

X¼Xm;n

þ 1

2n2 sin hm
o

ou
Iðr;XÞ s1 � rn2

� �� �� �
X¼Xm;n

þ ðja þ jsÞIðr;Xm;nÞ

¼ n2jaIb þ
js

4p

XNh

m0¼1

XNu

n0¼1

Iðr;Xm0 ;n0 ÞUðXm0 ;n0 ;Xm;nÞwm0

h wn0

u .

ð4Þ

Here, the discrete polar and azimuthal angles are ex-
pressed as follows:

hm ¼ ðm� 1=2ÞDh; m ¼ 1; 2; . . . ;N h; ð5aÞ
un ¼ ðn� 1=2ÞDu; n ¼ 1; 2; . . . ;Nu; ð5bÞ
where Dh = p/Nh and Du = 2p/Nu. For each discrete
ordinate, the corresponding weight is obtained as

wm
h ¼

Z hmþ1=2

hm�1=2
sin hdh ¼ cos hm�1=2 � cos hmþ1=2; ð6aÞ

wn
u ¼

Z unþ1=2

un�1=2

du ¼ unþ1=2 � un�1=2; ð6bÞ

where

hmþ1=2 ¼ ðhm þ hmþ1Þ=2; ð7aÞ
unþ1=2 ¼ ðun þ unþ1Þ=2. ð7bÞ

Since Eq. (4) contains two angular redistribution terms,
the derivatives with respect to polar h and azimuthal u
angles must be approximated by finite differences. Simi-
lar to the treatment of angular redistribution terms of
the DOM in the spherical or cylindrical medium with
a uniform refractive index [17], we may approximately
write the first angular redistribution term as

1

2n2 sin hm
o

oh
IðnX� kÞ � rn2
� �� �� �

X¼Xm;n

’ vmþ1=2;n
h Imþ1=2;n � vm�1=2;n

h Im�1=2;n

wm
h

. ð8Þ

The values of vm�1=2;n
h depend only on the differencing

scheme and, therefore, are independent of intensity
and may be determined by examining a particularly sim-
ple intensity field. For example, if the medium is isother-
mal, then I = n2Ib = constant. This then leads to

vmþ1=2;n
h � vm�1=2;n

h

¼ wm
h

2n2 sin hm
o

oh
nX� kð Þ � rn2

� �� �
X¼Xm;n

¼ wm
h

2n2 sin hm
½cos 2hm a cosun þ b sinunð Þ � c sin 2hm�;

ð9Þ
where the refractive index derivatives, a, b, and c, are de-
fined respectively as

a ¼ 1

n
on
ox

¼ 1

2n2
on2

ox
; ð10aÞ

b ¼ 1

n
on
oy

¼ 1

2n2
on2

oy
; ð10bÞ

c ¼ 1

n
on
oz

¼ 1

2n2
on2

oz
. ð10cÞ

Eq. (9) may be used as a recursion formula for vmþ1=2;n
h , if

a value for v1=2;nh can be determined. This value can be
found by comparing the following relations:Z p

0

1

2n2 sinh
o

oh
I nX�kð Þ �rn2
� �� �� �

sinhdh

¼ 1

2n2
½IðnX�kÞ �rn2�h¼p �

1

2n2
½IðnX�kÞ �rn2�h¼0 ¼ 0;

ð11aÞZ p

0

1

2n2 sinh
o

oh
I nX�kð Þ �rn2
� �� �� �

sinhdh

¼
XNh

m¼1

wm
h

1

2n2 sinh
o

oh
f½I nX�kð Þ �rn2�g

� �
h¼hm

¼
XNh

m¼1

vmþ1=2;n
h Imþ1=2;n� vm�1=2;n

h Im�1=2;n
h i

¼ vNhþ1=2;n
h INhþ1=2;n � v1=2;nh I1=2;n; ð11bÞ

Therefore,

v1=2;nh ¼ vNhþ1=2;n
h ¼ 0. ð12Þ

Similarly, the second angular redistribution term in Eq.
(4) can be approximately written as

1

2n2 sin hm
o

ou
I s1 � rn2
� �� �� �

X¼Xm;n

’
vm;nþ1=2
u Im;nþ1=2 � vm;n�1=2

u Im;n�1=2

wn
u

ð13Þ

and the recursion formula for vm;nþ1=2
u is given as follows:

vm;nþ1=2
u � vm;n�1=2

u ¼
wn

u

2n2 sin hm
os1

ou
� rn2

� �
X¼Xm;n

¼ �
wn

u

sin hm
ða cosun þ b sinunÞ; ð14aÞ

vm;1=2u ¼ vm;Nuþ1=2
u ¼ 1

2n2 sin hm
ðj � rn2Þ ¼ b

sin hm
. ð14bÞ

Then the discrete ordinates equation can be rewritten as

Xm;n � rIðr;Xm;nÞ

þ vmþ1=2;n
h Imþ1=2;n � vm�1=2;n

h Im�1=2;n

wm
h

þ
vm;nþ1=2
u Im;nþ1=2 � vm;n�1=2

u Im;n�1=2

wn
u

þ ðja þ jsÞIm;n

¼ n2jaIb þ
js

4p

XNh

m0¼1

XNu

n0¼1

Im
0 ;n0Um0 ;n0 ;m;nwm0

h wn0

u . ð15Þ



L.H. Liu / International Journal of Heat and Mass Transfer 49 (2006) 219–229 223
Here, superscripts m, n, m 0, n 0, m ± 1/2 and n ± 1/2 de-
note the radiation directions.

To close Eq. (15), relations are needed between
the intensities Im±1/2,n±1/2 and Im±1,n±1. One appropri-
ate closure relation is based on the step scheme. Those
are

vmþ1=2;n
h Imþ1=2;n¼maxðvmþ1=2;n

h ;0ÞIm;n�maxð�vmþ1=2;n
h ;0ÞImþ1;n;

ð16aÞ

vm�1=2;n
h Im�1=2;n¼maxðvm�1=2;n

h ;0ÞIm�1;n�maxð�vm�1=2;n
h ;0ÞIm;n;

ð16bÞ

vm;nþ1=2
u Im;nþ1=2¼maxðvm;nþ1=2

u ;0ÞIm;n�maxð�vm;nþ1=2
u ;0ÞIm;nþ1;

ð16cÞ

vm;n�1=2
u Im;n�1=2¼maxðvm;n�1=2

u ;0ÞIm;n�1�maxð�vm;n�1=2
u ;0ÞIm;n.

ð16dÞ

By using the closure relations given in Eq. (16) and the
linearization technique [18] of source term, the final dis-
crete ordinate equation of radiative transfer in a three-
dimensional graded index medium becomes

Xm;n � rIðr;Xm;nÞ þ 1

wm
h

max vmþ1=2;n
h ; 0

� ��
þ 1

wm
h

max �vm�1=2;n
h ; 0

� �
þ 1

wn
u

max vm;nþ1=2
u ; 0

� �
þ 1

wn
u

max �vm;n�1=2
u ; 0

� �
þ ðja þ jsÞ

� js

4p
Um;n;m;nwm

h w
n
u

�
Im;n

¼ 1

wm
h

max �vmþ1=2;n
h ; 0

� �
Imþ1;n

þ 1

wm
h

max vm�1=2;n
h ; 0

� �
Im�1;n

þ 1

wn
u

max �vm;nþ1=2
u ; 0

� �
Im;nþ1

þ 1

wn
u

max vm;n�1=2
u ; 0

� �
Im;n�1 þ n2jaIb

þ js

4p

X
m0 ;n0 ;m 6¼m0 ;n6¼n0

Im
0 ;n0Um0 ;n0 ;m;nwm0

h wn0

u . ð17Þ
2.2. Moving least square approximation

In MLPG implementation, moving least square
(MLS) approximation [13–16] is employed for con-
structing shape functions. Consider a spatial sub-
domain Vx, the neighborhood of a point x and denoted
as the domain of definition of MLS approximation for
the trial function at x, which is located within the prob-
lem domain. To approximate the distribution of a gener-
ic function u in Vx, over a number of local nodes {xi},
i = 1,2, . . . ,n, the MLS approximant ~uðxÞ of u, "x 2 Vx,
can be defined by

~u ¼
Xk

j¼0

pjðxÞajðxÞ ¼ pTðxÞaðxÞ; ð18Þ

where pT(x) = [p1(x), p2(x), . . . , pk(x)] is a complete
monomial basis of order k, and a(x) is a vector contain-
ing coefficients aj(x), j = 1,2, . . . ,k, which are functions
of the spatial coordinates x = [x,y,z]T. The coefficient
vector a(x) is determined by minimizing a weighted dis-
crete L2 norm, defined as

J ½aðxÞ� ¼
XNMLS

i¼1

wMLS
i ½pTðxiÞaðxÞ � ûi�2; ð19Þ

where xi denotes the value of x at node i; wMLS
i ðxÞ is the

MLS weight function associated with the node i, with
wMLS

i ðxÞ > 0 for all x in the support of wMLS
i ðxÞ; and

NMLS is the number of nodes in Vx for which the weight
functions wMLS

i ðxÞ > 0. Here, ûi in Eq. (19) is the ficti-
tious nodal value, and not the nodal value of unknown
trial function ~ui in general.

The stationary of J with respect to a(x) leads to the
following linear relation between a(x) and û.

AðxÞaðxÞ ¼ BðxÞû; ð20Þ

where the matrices A(x), B(x) and û are defined by

AðxÞ ¼
XNMLS

i¼1

wMLS
i ðxÞpðxiÞpTðxiÞ; ð21Þ

BðxÞ ¼ wMLS
1 ðxÞpðx1Þ;wMLS

2 ðxÞpðx2Þ;
h
. . . ;wMLS

NMLS
ðxÞpðxNMLS

Þ
i
; ð22Þ

û ¼ û1; û2; . . . ; ûNMLS

� �
. ð23Þ

Solving for a(x) from Eq. (20) and substituting it into
Eq. (18) gives a relation which may be written in the
form of an interpolation function similar to that used
in finite element method, as

~uðxÞ ¼
XNMLS

i¼1

/iðxÞûi; 8x 2 V x; ð24Þ

where

/iðxÞ ¼
Xk

j¼1

pjðxÞ½A�1ðxÞBðxÞ�ji. ð25Þ

Here, /i(x) is usually called as the shape function of
MLS approximation corresponding to nodal point xi.
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The partial derivatives of the shape function are ob-
tained as

/i;lðxÞ ¼
Xk

j¼1

pj;l½A�1B�ji þ pj½A�1B;l þ ðA�1Þ;lB�ji
n o

;

ð26Þ

where ( ),l = o( )/ol represents the derivative with re-
spect to spatial coordinate l, l = x,y,z.
2.3. Discretization and numerical implementation

Eq. (17) is weighted over the local sub-domain VS,
which is located entirely inside the global problem
domain. The local sub-domain VS can be taken to be a
sphere or cube (for three-dimensional problem) centered
at a point xi in question. The integrated residuals are set
to zeroZ

V S

Xm;n � rIðr;Xm;nÞ þ 1

wm
h

max vmþ1=2;n
h ;0

� ��	
þ 1

wm
h

max �vm�1=2;n
h ;0

� �
þ 1

wn
u

max vm;nþ1=2
u ;0

� �
þ 1

wn
u

max �vm;n�1=2
u ;0

� �
þ ja þ jsð Þ

� js

4p
Um;n;m;nwm

h w
n
u

�
Im;n



vðx� xiÞdV

¼
Z
V S

1

wm
h

max �vmþ1=2;n
h ;0

� �
Imþ1;n

"

þ 1

wm
h

max vm�1=2;n
h ;0

� �
Im�1;n

þ 1

wn
u

max �vm;nþ1=2
u ;0

� �
Im;nþ1

þ 1

wn
u

max vm;n�1=2
u ;0

� �
Im;n�1 þ n2jaIb

þ js

4p

X
m0 ;n0 ;m 6¼m0 ;n 6¼n0

Im
0 ;n0Um0 ;n0 ;m;nwm0

h wn0

u

#
vðx� xiÞdV ;

m ¼ 1;2; . . . ;N h; n ¼ 1;2; . . . ;Nu; i ¼ 1;2; . . . ;Nnode.

ð27Þ

where v is the test function, and Nnode is the total num-
ber of nodes. Setting u = Im,n, substitution of Eqs. (24)–
(26) into Eq. (27) for all nodes leads to the following
discretized system of linear equations:

XNnode

j¼1

Km;n
ij Im;nj ¼ f m;n

i ; m ¼ 1; 2; . . . ;N h;

n ¼ 1; 2; . . . ;Nu; i ¼ 1; 2; . . . ;Nnode; ð28Þ
where

Km;n
ij ¼

Z
V S

Xm;n � r/jðxÞ þ
1

wm
h

max vmþ1=2;n
h ; 0

� ��	
þ 1

wm
h

max �vm�1=2;n
h ; 0

� �
þ 1

wn
u

max vm;nþ1=2
u ; 0

� �
þ 1

wn
u

max �vm;n�1=2
u ; 0

� �
þ ja þ jsð Þ � js

4p
Um;n;m;nwm

h w
n
u

�
/jðxÞ



vðx� xiÞdV ;

ð29aÞ

f m;n
i ¼

Z
V S

1

wm
h

max �vmþ1=2;n
h ; 0

� �
Imþ1;n

"

þ 1

wm
h

max vm�1=2;n
h ; 0

� �
Im�1;n

þ 1

wn
u

max �vm;nþ1=2
u ; 0

� �
Im;nþ1

þ 1

wn
u

maxðvm;n�1=2
u ; 0ÞIm;n�1 þ n2jaIb

þ js

4p

X
m0 ;n0 ;m 6¼m0 ;n6¼n0

Im
0 ;n0Um0 ;n0 ;m;nwm0

h wn0

u

#
vðx� xiÞdV .

ð29bÞ
Eq. (28) is solved independently for each direction, and
the boundary conditions (Eq. (3)) must be imposed on
the inflow boundary. For each node i on the inflow
boundary, the radiative intensity Im;ni is given by the
boundary condition, which can be directly imposed as
follows:

Km;n
ij ¼ dij; ð30aÞ

f m;n
i ¼ Im;ni ; ð30bÞ

where dij is the Kronecker� delta.
Because the in-scattering term in the discrete-ordi-

nates equation at the direction (m,n) contains the radia-
tive intensities of the other directions, the global
iterations similar to those used in the DOM are neces-
sary to include the source and boundary conditions.
For each discrete direction, the implementation of the
MLPG method can be carried out according to the
following routine:

Step 1: Choose a finite number of nodes in the problem
domain and its boundaries; decide the basis
function, MLS weight function and test func-
tion such that the MLS approximation is well
defined and the weighted integration of radia-
tive transfer equation can be implemented.

Step 2: Determine the local sub-domain VS and its
boundary for each node, and calculate Gaussian
quadrature points xQ in VS.
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Fig. 2. Physical geometry of slab.
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Step 3: Determine the nodes xi located in the domain of
definition of the MLS approximation for the
trial function at point xQ, i.e., those nodes with
wMLS

i ðxQÞ > 0.
Step 4: For those nodes in the domain of definition of

the MLS approximation of trial function at
point xQ; calculate shape function /i(xQ) and
the derivatives /i,x(xQ), /i,y(xQ) and /i,z(xQ).

Step 5: Evaluate numerical integrals in Eqs. (29a) and
(29b), and assemble contributions to the linear
system Eq. (28) for all nodes.

Step 6: Solve the linear system for the fictitious nodal
values bI m;n.
3. Results and discussions

Based on the theoretical and numerical analyses car-
ried out above, a computer code has been developed,
which is capable of modeling the multi-dimensional
radiative transfer problem in graded index media. Node
densification studies were also performed for the physi-
cal model to ensure that the essential physics are inde-
pendent of node number. To verify the MLPG
approach based on discrete-ordinate equations pre-
sented above for the radiative transfer problems in
graded index media, two test problems are examined.
The particular test cases are selected because exact, or
at least very precise, solutions of the radiative heat trans-
fer exist for comparison with the MLPG approach. For
the following numerical study, a Gaussian quadrature
with 6 integration points in each coordinate is employed
to evaluate numerical integrals in Eq. (29). The quartic
function [13] with compact supports is used to construct
the weight function for the MLS approximation and the
test function in the weighted integration of the dimen-
sionless energy equation and the dimensionless radiative
transfer equation

gðrÞ ¼ 1� 6r2 þ 8r3 � 3r4; r 6 1

0; r > 1

	
. ð31Þ
3.1. Radiative equilibrium in a one-dimensional graded

index slab

As shown in Fig. 2, we consider a problem of radia-
tive equilibrium in a one-dimensional semitransparent
gray absorbing–emitting slab with thickness L. The
boundaries are opaque, diffuse and gray walls. The emis-
sivities of boundary walls are e0 and eL, and the temper-
atures of boundary walls are imposed as T0 = 1000 K
and TL = 1500 K, respectively. The absorption coeffi-
cient ja is uniform over the slab, but the refractive index
n of medium varies with the axis coordinate z. The
boundary conditions are given by
Ið0; nÞ ¼ e0n20
rT 4

0

p
þ 2ð1� e0Þ

Z 0

�1

Ið0; n0Þn0 dn0; n P 0;

ð32aÞ

IðL; nÞ ¼ eLn2L
rT 4

L

p
þ 2ð1� eLÞ

Z 1

0

IðL; n0Þn0 dn0; n 6 0;

ð32bÞ

where n0 and nL are the refractive indices at boundaries
of z = 0 and z = L, respectively. At radiative equilib-
rium, the temperature distribution within the medium
is determined by [12]

T ðzÞ ¼ p
2rn2ðzÞ

XNn

m¼1

Iðz; nmÞDn
" #0:25

. ð33Þ

The MLPG approach is applied to this one-dimensional
radiative transfer problem. Linear and sinusoidal refrac-
tive indices are considered. 101 nodes are uniformly dis-
tributed in the problem domain z 2 [0,L] and its
boundaries. The angular region n = cosh 2 [�1,1] is
uniformly divided into Nn = 40 parts. The monomial
basis pT(x) = [1,z,z2] is used, and the weight function
for the MLS approximation and the test function in
the weighted integration of the discrete ordinate equa-
tion are given as follows:

wMLSðz� ziÞ ¼ g
z� zi
aMLSDz

���� ����� 

; ð34Þ

vðz� ziÞ ¼ g
z� zi
aGQDz

���� ����� 

; ð35Þ

where Dz is the average nodal spacing between two
neighbor nodes, and the dimensionless size parameters
aMLS = 2.5 and aGQ = 1.5 are used.

The temperature distributions within the slab are
shown in Fig. 3 for three values of slab optical thickness,
namely sL = 0.01, sL = 1.0 and sL = 3.0, in the case of
n(z) = 1.2 + 0.6z/L, e0 = eL = 1. This case was also used
as a test case by Huang et al. [8] using the pseudo source
adding method. As shown in Fig. 3, the MLPG results
are in good agreement with the results obtained by using
the pseudo source adding method. The maximum rela-
tive error based on the data in Ref. [8] is less than 1%.
The effects of number of node number and angular
discretization are shown in Fig. 4 for the case of
n(z) = 1.2 + 0.6z/L, sL = 3 and e0 = eL = 1. The com-
parison is quite good, even with a node number and
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Fig. 3. Temperature distributions within slab for the case of
n(z) = 1.2 + 0.6z/L, e0 = eL = 1.
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angular discretization only Nnode · Nn = 11 · 5. The
convergence of the MLPG approach is demonstrated
in this figure. The time required for computation is less
than 5 min on a personal computer with Intel Pentium
Pro 450 MHz processor.

A nonlinear refractive index is also studied by using
MLPG approach. The refractive index of medium with-
in the slab varies sinusoidaly with the axis coordinate as
nðzÞ ¼ 1:8� 0:6 sinðpz=LÞ. The slab optical thickness is
sL = 1.0. Fig. 5 shows the temperature distributions
within the slab for two different conditions of wall emis-
sivity, namely e0 = eL = 1 and e0 = eL = 0.7. As shown
in Fig. 5, the MPLG results are in good agreement with
the results obtained by Tan et al. [19] using the pseudo
source adding method. The maximum relative error
based on the data in Ref. [19] is less than 1%.

The MLPG approximation of the dimensionless radi-
ative heat fluxes based on different nodes within the slab
are profiled in Fig. 6 in the case of n(z) = 1.2 + 0.6z/L
and e0 = eL = 1. The dimensionless radiative heat flux
is defined as

W ¼ 2p
Z 1

�1

Ildl=n20rðT 4
0 � T 4

LÞ. ð36Þ



Table 1
Dimensionless radiative heat flues in the case of blackbody
boundaries and linear refractive index

n0 nL sL W

RT [11] DOM [11] MLPG

1.0 1.5 0.1 0.9696 0.9696 0.9704
1.0 1.5 1 0.7243 0.7244 0.7241
1.0 1.5 10 0.1727 0.1729 0.1744
1.0 3.0 0.1 0.9872 0.9875 0.9947
1.0 3.0 1 0.8720 0.8719 0.8781
1.0 3.0 10 0.3152 0.3159 0.3256
1.0 5.0 0.1 0.9931 0.9929 1.0146
1.0 5.0 1 0.9250 0.9258 0.9461
1.0 5.0 10 0.4536 0.4563 0.4827
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Fig. 7. Two-dimensional rectangular geometry and two pat-
terns of nodal arrangement: (a) 225 nodes with regular
arrangement and (b) 229 nodes with irregular arrangement.
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Theoretically, the exact dimensionless radiative heat
fluxes based on different nodes are constant in this case,
but the computed values of dimensionless radiative heat
flux by using MLPG approach vary with the location of
nodes and oscillate around its averaged value. This is
very similar to FEM. However, the oscillation of dimen-
sionless radiative heat flux computed by using MLPG
approach is very small. The averaged dimensionless
radiative heat fluxes for the cases of sL = 0.01 and
sL = 1.0 are Wav = 1.437 and Wav = 1.040, respectively,
and the maximum deviation of the dimensionless radia-
tive heat flux, jW�Wavj/Wav, is less than 0.3%.

The averaged dimensionless radiative heat fluxes in
the case of blackbody boundary and linear refractive in-
dex are computed by using MLPG approach and given
in Table 1. The results are compared with those obtained
by Lemonnier et al. [11] using the curved ray-tracing
technique (RT) and the DOM. From Table 1, it can
be seen that the MLPG approach presented in this paper
has a good accuracy in solving the dimensionless radia-
tive heat fluxes in one-dimensional non-scattering
graded index media. The maximum relative error of
the dimensionless radiative heat flux based on the data
obtained using the RT in Ref. [11] is less than 6.5%.

3.2. Isotropically scattering in a gray enclosure

As shown in Fig. 7, we consider the radiative heat
transfer in a two-dimensional rectangular gray semi-
transparent graded index medium enclosed by opaque
boundaries with emissivity ew. The optical thickness
based on the side length L (L = 0.1 m) of rectangular
enclosure is sL = (ja + js)L = 0.1. The lower wall is kept
hot, but all other walls and the media enclosed by the
rectangular enclosure are kept cold, The absorption coef-
ficient ja and the scattering coefficient js of the media en-
closed by the rectangular enclosure is uniform, but the
refractive index is a linear function of spatial position

nðx; yÞ ¼ 1þ 2ðxþ yÞ=L. ð37Þ
The MLPG approach is applied to solve the radiative
transfer problems in this rectangular enclosure. The
monomial basis pT(x) = [1,x,y,x2,xy,y2] is used, and
the weight function for the MLS approximation and
the test function in the weighted integration of the dis-
crete ordinate equation are given as follows:

wMLSðx� xiÞ ¼ g
x� xi
aMLSDx

���� ����� 

g

y � yi
aMLSDy

���� ����� 

; ð38Þ

vðx� xiÞ ¼ g
x� xi
aGQDx

���� ����� 

g

y � yi
aGQDy

���� ����� 

; ð39Þ

where Dx and Dy are the average nodal spacing between
two neighbor nodes in x and y coordinate directions,
respectively, and the dimensionless size parameters
aMLS = 2.5 and aGQ = 1.5 are used. The 4p solid angular
region is uniformly divided into Nh · Nu = 9 · 18 parts.
Two patterns of nodal arrangement shown in Fig. 7 are
considered: (a) 225 nodes with regular arrangement, and
(b) 229 nodes with irregular arrangement. The dimen-
sionless net radiative heat fluxes qw1=rT

4
w1 on the lower
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wall are presented in Fig. 8 in the case of x = 1.0 for
three values of wall emissivities, namely 0.1, 0.5 and
1.0, and compared to the results obtained from the
FVM presented in Ref. [12]. The MLPG results agree
with those of FVM very well. No observable difference
could be detected between the results of MLPG and
FVM when they are presented in graphical form. The ef-
fects of the nodal irregularity are very small. Because of
asymmetric distribution of refractive index, differing
from the case of uniform refractive index, the profiles
of dimensionless net radiative heat flux are asymmetric.
4. Conclusions

Because ray goes along a curved path determined by
the Fermat principle, curved ray tracing is very difficult
and complex in graded index medium. To avoid the
difficult and complex computation of curved ray trajec-
tories, the methods, which are not based on curved
ray-tracing, need to be developed for the solution of
radiative heat transfer in graded index medium. The
discrete-ordinate equation of radiative transfer in
three-dimensional semitransparent graded index media
is presented. Then, a meshless local Petrov–Galerkin
approach based on discrete-ordinate equations is de-
veloped to solve the radiative transfer problem in
multi-dimensional absorbing–emitting–scattering semi-
transparent graded index media, in which a moving least
square approximation is used to construct the shape
function. Two particular test problems in radiative
transfer are taken as examples to verify this meshless ap-
proach. The predicted temperature distributions and the
dimensionless radiative heat fluxes are determined by the
proposed method and compared with the other bench-
mark approximate solutions. The results show that the
meshless local Petrov–Galerkin approach based on dis-
crete-ordinate equations has a good accuracy in solving
the radiative transfer problems in absorbing–emitting–
scattering semitransparent graded index media.
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